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We consider the problem of mass injection from a flat plate into uniform supersonic 
flow when the boundary layer is blown off at  the leading edge to form a thin free shear 
layer separating the inviscid injectant layer from the external flow. The injection 
is moderate, i.e. of the same order of magnitude as the velocity of entrainment into 
the base of the shear layer. For simplicity, we consider similarity blowing, proportional 
to x*-*, where x* is measured along the plate from the leading edge. We find that the 
solution in the injectant region, based on initial conditions at  the leading edge, is non- 
unique unless fixed by downstream conditions. When injection is cut off at a finite 
distance along the plate, this enables us to find a solution to the problem in which the 
shear layer eventually reattaches to the plate and for which the pressure and the 
height of the injectant layer are continuous a t  cut-off. The study provides a partial 
connexion between the earlier studies of weak blowing in which the boundary layer is 
not blown off and of strong blowing for which the boundary layer is blown off and the 
entrainment into the shear layer is negligible. 

1. Introduction 
We consider a semi-infinite flat plate immersed in a viscous fluid which has velocity 

lJ*, in a direction parallel to the plate at  large distances upstream. The representative 
Reynolds number R, defined below in 6 2, is taken to be iarge. A second fluid is injected 
across a portion of the plate with velocity V$ in a direction normal to the mainstream. 

The earliest studies of the properties of this fluid motion were concerned with weak 
blowing in which V$ = O( U*, R-4) and separation does not occur or with moderate 
blowing in which V z  has the same order of magnitude but separation does occur. 
Schlichting & Bussman (1943), Iglisch & Grohne (1945) and Emmons & Leigh (1953) 
assumed that V$K x*-4, where x* measures distance along the plate from the leading 
edge. The governing equations then reduce t o  a Blasius form and they found that 
solutions can be found only if the injection rate is less than a certain critical value V,*. 
Emmons & Leigh noticed that this value is identical with the asymptotic entrainment 
of a free shear layer separating a uniform stream from a fluid at  rest. Consequently they 
suggested that if V z  > V,* the boundary layer is blown off the plate in the neighbour- 
hood of the leading edge to form a free shear layer. This description is consistent with 
that already given by Pretsch (1944) for blowing in the presence of a favourable 
pressure gradient. He showed thak, when V$ RtlU*, is large and such that a similarity 
solution of the boundary-layer equations is possible, a very thin shear layer develops 
which separates the mainstream from the injected fluid. The injectant layer is an 



116 C .  Diver and K .  Stewartson 

order of magnitude thicker than the shear layer above it, but its thickness is still 
small in comparison with the lateral dimension of the plate and the fluid motion in it 
is controlled by inviscid forces only. A crucial feature of Pretsch's solution is the 
favourable pressure gradient, which serves to drive the injectant downstream, and it 
fails when this gradient vanishes. 

Catherall, Stewartson & Williams (1965) have examined the response of the 
boundary layer to wesk uniform injection when the imposed pressure gradient is 
zero. The boundary layer takes on a non-similar form near the leading edge and 
separates a t  a finite distance from the leading edge. Near this point the reduced skin 
friction r takes the form 

and t'he displacement thickness N R-4 log 7-1 (Brown & Stewartson 1969). Pre- 
sumably the boundary layer is then blown off the plate somewhat in the manner 
discussed by Emmons 8 Leigh but the precise mechanism is still not clear and may 
even involve hysteresis (Smith & Stewartson 1973 b) .  

Cole & Aroesty (1968) initiated the study of moderate blowing in a supersonic 
stream and took the injection to be strong enough to allow neglect of the entrainment 
into the shear layer by comparison. They assumed that the injectant region is inviscid 
and determined the relation between its thickness, as defined by the position of the 
much t'hinner shear layer above it, and the injection velocity by means of a formula 
similar to the one given by Gadd, Jones & Watson (1963). Klemp & Acrivos (1972) 
made a parallel study for an incompressible fluid and found that when Vz.c x*-4 for 
all x* > 0 there is a double-structured solution for large .r* analogous to that found 
by Cole & Broest'y for supersonic flow. Amr & Kassoy (1973) further investigated the 
structure of the supersonic flow field when entrainment may not be neglected. 

Since t,here must be a favourable pressure gradient above the separated boundary 
layer to drive the injectant downstream, there must also be a pressure rise upstream 
of separation or downstream of any reattachment to  ensure that conditions a t  infinity 
are satisfied. The first calculation of a complete pressure field was made by Smith & 
Stewartson ( 1 9 7 3 ~ )  for strong blowing in which V:/U*, N R-#, so that entrainment 
can be neglected, and in which separation takes place ahead of the onset of blowing. 
They found that separation occurs through a free interaction and that the pressure 
rise has reached a plateau before blowing begins. The pressure then decreases 
throughout the blowing region and is assumed to  return to its undisturbed value 
at7 the cut-off of injection; this condition ensures a unique solution. Later 
Stewartson (1974b) analysed the transition regions ahead of blowing and at 
cut-off and demonstrated that the discontinuities in the theory may legitimately be 
smoothed out. 

The connexions between the theory for moderate blowing over an infinite length 
and that for weak blowing leading to separation or, on the other hand, for strong blow- 
ing remain imperfectly understood. Amr & Kassoy (1976) initiated the study of 
moderate blowing over a finite length of the plate when the mainstream is supersonic 
and the injection is proportional to x*-t. They based their theory on the premise 
that disturbances can only travel downstream because of the hyperbolic or parabolic 
character of the governing equations. Upstream of cut-off they therefore used the 
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similarity solutions which they had earlier discussed for an infinite length of blowing. 
Beyond cut-off, the free shear layer continues to develop, entraining fluid normally, 
but there is no longer a supply from the plate. Consequently they assumed that re- 
attachment of the shear layer to the plate occurs when all the injectant has been 
absorbed. On computing the flow field downstream of cut-off satisfying this condition, 
they found discontinuities in both the displacement thickness and the pressure at 
the cut-off point. They reasoned that a narrow transition region exists at  this point 
to smooth out these jumps. 

Now, discontinuities of this type have not been found before in boundary-layer 
theory and even a pressure jump seems to take place only in special circumstances. In 
the present class of problems the pressure jump a t  the onset of blowing can be justified 
on the grounds that a compressive free interaction has taken place, possibly with a 
local region of reversed flow. The pressure jump at  reattachment may yield to analysis 
eventually even though it is imperfectly understood at  present. It has been described 
in a series of papers by Chang & Messiter (1968) ,  Burggraf (1970, 1973, 1975) and 
Messiter, Hough & Feo (1973) on the basis that it is largely inviscid in character, the 
pressure and inertia terms becoming large in comparison with the viscous terms. The 
pressure jump is then needed to turn the fluid in the shear layer round to continue 
the recirculating motion which precedes reattachment. Comparable theories describing 
the discontinuities at  cut-off do not appear to be feasible so in this paper we re-examine 
the whole problem of moderate blowing over a finite length of the plate to find an 
alternative solution free of this anomaly. 

We find that the solution upstream of cut-off contains an arbitrary constant and 
is therefore not independent of conditions downstream as was assumed by Amr & 
Kassoy (1976).  This constant may be interpreted as an effective origin shift (see (4.15) 
below) and as such its role is similar to  the origin shift in the free-interaction problem 
(Stewartson 1 9 7 4 ~ ) .  With this constant at  our disposal it is possible to ensure the 
continuity of the displacement thickness and the pressure at  cut-off and thus a 
satisfactory completion of the description of the flow field. As the intensity of blowing 
increases, we find that the predictions of our model are consistent with those of 
Smith & Stewartson ( 1 9 7 3 ~ )  for strong blowing, particularly with iespect to the 
pressure at  cut-off, although the differences in the injection velocity distribution 
preclude a full comparison. A relation with the theory for weak blowing (e.g. Catherall 
et al. 1965) also seems likely but further study is needed to settle this point. 

2. Formulation 
A viscous incompressible fluid flows past a semi-infinite plate defined in Cartesian 

co-ordinates (x*, y*) by 0 6 x* < m, y* = 0. At large distances from the plate the 
fluid is in uniform supersonic motion parallel to the x* axis with velocity U*,. At a 
general point let p* be the density of the fluid, p*  the pressure, T* the absolute tem- 
perature and (u*, v*) the components of velocity, also let ,u* be the coefficient of 
viscosity and let it be proportional to T". A second fluid, also viscous and compressible, 
is injected across the plate with velocity (0, 7;). In  the case when 
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where C is a constant and the suffixes co and w refer to conditions at large distances 
from the plate and on the plate respectively, Iglisch & Grohne (1  945) have shown t h a t  
once the momentum equation of the boundary layer has been reduced to the Blasius 
form by the use of the Howarth-Dorodnytsin variables a solution can be found if 

c < 0, = 0.87574, (2.2) 

the numerical value being due to Emmons & Leigh (1  953). When C > C, no solution 
was found and they suggested that the boundary layer is then blown off the plate in 
some sense and forms a free shear layer. Such a possibility had already been investi- 
gated for boundary layers in a favourable pressure gradient by Pretsch (1 944). Emmons 
& Leigh (1953) then showed that for a free shear layer in which u*+ U*, as y*+m 
and u* 3 0 as y* -+ - 00 the solution of the Blasius equation gives 

which defines the rate a t  which fluid is entrained into the shear layer once similarity 
is established. They left open the question of the position of the shear layer and the 
mode of adjustment of the value of v* at the wall to the value (2.3) at the base of the 
shear layer. These points were answered by Cole & Aroesty (1 968) for C $ 1 and by 
Amr & Kassoy (1973) for C = 0(1), both studies finding a similarity solution for the 
inj ectant region. 

In  this paper we consider injection to occur only over a finite length L* of the plate 
so that 

(2.4a) 

lo ,  x* > L*, (2.4b) 

and we assume that R = U*, L*pz/,uz B 1 so that the boundary-layer arguments are 
appropriate. We suppose that over a region 0 < x* 6 xg, where xz > L*, the on- 
coming fluid is separated from the injected fluid by a self-similar free shear layer of 
thickness O(R-tL*). The injected fluid is confined within a distance 6*(x*) of the plate, 
where 

L*R-3 < 6*(x*) < L*. (2.5) 

Subsequently, the free shear layer reattaches to the plate and a conventional boundary 
layer develops. A sketch of the flow is shown in figure 1 .  Here 

x; = (C/C0)2L*, 

which is the value of x* at which all the injected fluid has been entrained into the 
shear layer. Either the shear layer reattaches at  this point and xg = x s  or it continues 
to entrain fluid which comes from a length of reversed flow in x$ < x* < $2. Of course, 
it may never reattach, in which case x;-+ co. Later we discuss these possibilities and 
show that in fact xg - xf < 1.  

To find a solution to the problem we require two relations between p*  and 6*. The 
first is derived from the equations of motion in the injectant region. Here the injected 
fluid may be presumed to have constant temperature and density to lowest order, as 
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Y = O  

Position of free shear layer 

<- Injection .-> 
FIGURE 1. Flow in the injectant layer. 

Amr & Kassoy (1 973) have demonstrated. We adopt the following non-dimensional: 
variables : 

(2.7) 1 
X* = L*X, y* = L*R-*(M*,~ - I)* (T;/T*,)*c%~, 

p* = p: +p*, uz2 R-*(M$~ - I)-) (T;/T$)*c%P(x), 

U* = UE R-*(MZ2 - I)-* (T;/T*,)f Cju, V* = U*, R-b(T;C/T$) CV, 

6* = L*R-*(MZ2 - I)* (TE/T*,)* CQ(x), 

where M*, is the Mach number. These are similar to those used by A m  & Kassoy 
(1976), the only difference being that ours are also scaled with respect to C. The 
equations of motion in the injectant layer now become 

u, + vy = 0, uu, + vuy = - p,. (2.8) 

In  the same way that Cole & Aroesty found that there is an integral relation between 
p and 6 for strong blowing, we find that in the weak blowing problem which we are 
considering 

A further relation between p and 6 emerges from the application of slender-body 
theory in the external flow, namely 

Two conditions on S(x) are now necessary to solve the integro-differential equations 
(2.9) and (2.10). The boundary layer separates close to the leading edge so 

p ( x )  = sl(x). (2.10) 

S(0) = 0. (2.11) 

The second condition is the value of 6 at xF, which may be found by considering the 
reversed flow region. We shall show that 

a(%,) = 0. (2.12) 
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X F  X R  

FIUURE 2. Flow near reattachment. 

If the shear layer does not reattach, xR -+ co. The injectant increases the total flux 
past the plate by a factor I + O(R-4) so, in the limit x+ co, p* can be changed from its 
original value p*, by only a factor 1 +O(R-4). We therefore assume that p(x)+O 
as x- fco.  Consider x 9 1. The entrainment by the shear layer must be fed by fluid 
coming from x N co, where u < 0, and this balance requires 

uS(x) N xt. (2.13) 

If uu, N p,, then S(x) = Bx3, where B is some constant, and u N 2-6, so that u+ 0 
as x+co. This form is however contradictory because the pressure gradient S"(x) 
is then favourable and cannot sustain a reversed flow. An alternative is that u -. 1, 
x 3 1 and px < uux. If this is so (2.13) implies S(x) = Bx*. The favourable pressure 
gradient is now consistent because it will simply retard the reversed flow. The finite 
velocity when x 9 1 must however be set up by some external mechanism. Although 
this is possible in principle, it is outside the scope of this paper. We conclude that 
x,-x, must be finite. Figure 2 shows the flow pattern in X ,  < x < xR for this case. 
The limiting streamline @ = - 28, which divides the injectant from the reversed flow, 
is entrained by the shear layer at xF = 1/09. A t  xR it strikes the plate a t  an angle and 
divides. The fluid below it is turned back and feeds the reversed flow while the fluid 
above continues along the plate to re-establish the boundary layer past xR. 

Because the pressure gradient and acceleration are large near xR, viscous forces 
are unimportant in the major part of the flow here. We therefore look for an inviscid 
reattachment region at  xR of the form discussed by Messiter et al. (1973). 

We have shown that p* is ultimately changed from p*, by only a factor 1 + O(R-4). 
At xR there is therefore a sudden rise in the pressure from p(xR - ) to its undisturbed 
value p(xR + ) = 0. This must be strong enough to  turn the fluid under the streamline 
@ = -2)b ack into the reversed flow region. However, p(xR - ) must still be consistent 
with p ( x )  upstream and cannot be greater than O( 1) .  Fluid on @ = - 2) is accelerated 
in the shear layer after its entrainment a t  xF and if xR - xF were O( 1 )  it would have 
reached the same order of velocity as the external flow before reattachment. In  this 
case p(xR- )  = O(R$ (lp* -p*,l = O(p*, U*,2)), which is contradictory, and we infer 
that xR - x,  << 1.  In  this event 

S(xR) = o ( ( x R - x F ) P ( x R - ) )  (2.14) 



Injection into a separated supersonic boundary layer 121 

A more detailed examination of the reattachment region reveals that 6(x,) cannot be 
greater than O(R-4) (Diver 1978), on which scale viscous forces come into play. The 
assumption of inviscid attachment is therefore formally incorrect, but we may still 
use the condition (2.12) that 6(x,) = 0, which is all that we require to complete the 
problem posed in (2.9)-(2.11). 

A general feature of the solution is that the pressure gradient is zero immediately 
after cut-off, i.e. 

p'(1 +) = 0. (2.15) 

The proof of this result will be given elsewhere (Diver 1978) but is based on the fact 
that p'(  1 + ) $. 0 implies u a  (x - l)t as x-+ 1 + if y = 0. Hence the associated form of 
6 has a like singularity which in turn implies an infinite pressure in virtue of (2.10), 
thus contradicting the assumption of a finite pressure gradient at  x = 1 + . 

3. Marginal blow-off 
We define marginal blow-off by the condition 0 < 1 -a < 1 (a = C,,/C). Thus the 

normal velocity on the plate is only just greater than that at  the base of the shear 
layer, so 6, the reduced height of the injectant region, is small and reattachment takes 
place soon after cut-off. The presence of a small parameter enables us to find the 
solution analytically and from this solution we can infer the behaviour of the flow for 
general values of a. 

Since the range of the integral in (2.9a) is small [O(l -a)] it may be simplified by 
using the formula 

p ( t )  = p ( x )  + (t - x)p ' (x)  + O( (1 - a)2), a2x 6 t < x. (3.1) 

On making use of (2.10), the integral equation then reduces to 

where 
A"(x) = - 2 + 0 ( 1  -a), 

A(x) = ( I  -a)-* a(%), 

which confirms the earlier remark that 6 is small. We note that Kassoy (1974) has 
also discussed the marginal blow-off problem, but for an infinite length of injection. 
He found when 1 -a = O(R-4) that 6* = O(L*R-)), which is of the same order of 
magnitude as the thickness of the shear layer. This result is formally consistent with 
(3.3), which implies that &* = O(L*R-d(l -a)*) = O(L*R-4) when 1 -a = O(R-4). 

Integration of (3.2) gives 
A'(x)2- ~ / A ( x )  = - 4/A (3.4) 

and a further integration shows that there are three branches to the solution, corres- 
ponding respectively to 1/A = 0, A < 0 and A > 0. 

If 1/A = 0, (3.4) becomes 
A@) = (3x)Q, (3.5) 

which is the similarity solution derived by Amr & Kassoy (1973) for an infinite length 
of blowing. Here A'@) is positive for all finite x and tends to zero only if (3.5) holds 
in 0 < x < 00 andxtendstoinki ty .  
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If A < 0, (3.4) becomes 

When this holds in the full range 0 < 2 < co, A’(x) tends to the finite limit 
A(x) is linear as x tends to infinity. 

Finally, if A > 0, (3.4) becomes 

and 

This solution terminates at x, = anAt, near which point 

A(x) = 3 3 ( ~  - x,)# - (3*/5A) (X - x,)* + O ( ( X  - x~)~). (3.8) 

When x > &TAP, A’(x) < 0 and the shear layer turns down towards the plate, but 
because more fluid is being injected than is being entrained, it is unable to reattach 
smoothly. Thus the solution terminates in the singularity shown by (3.8). 

We now see that there are essentially only three solutions of (3.2): the similarity 
form with 1 /A = 0 and two others of the form 

x-3S(r) = Fl(x/A#) and x-tS(x) = F2(x/1A1#), 

depending on the sign of A. For example, if A > 0, (3.7) may be written as 

where 
(3.9) 

(3.10) 

Which of these three solutions we choose is determined by the matching with the 
solution when x > 1. Thus, despite the fact that disturbances only travel downstream 
in supersonic flow, there is an inbuilt mechanism which enables the flow upstream to 
adjust to conditions beyond cut-off. This situation is similar to the free interaction 
in the boundary layer which occurs ahead of a phenomenon such as an incident shock or 
convex corner. Here there are also three ways in which the evolving boundary layer 
can behave. If it does not continue to take the undisturbed Blasius form in which the 
pressure is zero, either the pressure rises and the boundary layer separates, after 
which the pressure reaches the constant plateau value, or the pressure falls and the 
solution terminates in a singularity withp -+ - 00. In  the blowing problem, the pressure 
is not uniformly zero for the central branch ( 3 4 ,  but the behaviour of the pressure 
at  large values of x in the solutions (3.5)-(3.7) is otherwise analogous to  that in the 
interaction problem. 

However, (3.5)-(3.7) hold only in 0 < x < 1 and we must consider the flow beyond 
x = 1. In  the marginal blow-off problem the length between cut-off and reattachment 
is small [0( 1 - a)] and the pressure there must be large if it is able to reduce A(x) to 
zero at  xR. Since we wish both A(x) and A’(x) to be continuous near x = 1, it follows 
that 

A’(1) = O((I-CC)-~A(I)).  (3.11) 

There is now a contradiction if A( 1 )  4 0 because then (3.4) cannot be satisfied, so 

A(1) = 0. (3.12) 
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U 0.97 0.98 0.99 
D'(0) - 1.117 - 1.169 - 1.200 

TABLE 1 

This condition is sufficient to determine the solution uniquely. Of the three branches 
(3.5)-(3.7), (3.5) and (3.6) both have A ( l ) ,  A'(1) > 0 and cannot satisfy (3.12). Only 
(3.7) is appropriate, with A determined by (3.12), which gives 

A = (2/n)Q. (3.13) 

The solution for A(x) in 0 < x < 1 is now complete to lowest order, but the behaviour 
of A(x) in 1 < x < xR and the values of the pressure a t  cut-off and reattachment are 
as yet unknown. We therefore continue by examining the region I 1 - x/ = O( 1 -a) in 
more detail. Here we mi te  

x =  l + ( l - a ) z ,  6(x) = ( 1 - a ) D ( z ) ,  (3.14) 

where the scale for S(x) is suggested by (3.4) and (3.11). Equations (2.9) and (2.10) 
then reduce to the following integro-differential equation for D(z)  in --co < z < 2: 

(3.15) 

The range of integration is finite for general values of z and we cannot simplify the 
equation by linearizing D'(s) as we did for (2.9a;). Thus its solution seems to require 
numerical study. 

Near reattachment however, where Iz - 21 6 1, we may write 

D'(s) = D'(0) + O((z  - 2 ) 2 )  (3.16) 

by virtue of (2.15) and this reduces (3.15) to  

D(z)(D'(O)-D'(z))  = -4 (2 -2 )+0( (z -2 )2 ) ,  12-21 6 1. (3.17) 

The expansion of D(z)  in powers of z - 2 must have the leading term D'(2)(2 - 2) 
because D(2) = 0. Thus, setting the coefficient of 2 - 2  to zero in (3.17), we find the 
following relation between the pressure D'(0) at cut-off and the pressure D'(2) at 
reattachment : 

D'(2) (D'(0) - D'(2))t  = - 4. (3.18) 

As an alternative to solving (3.15) numerically to find D'(O), we may make use of 
the results available from the general procedure to be described in the next section. 
I n  table 1 we display the values of D'(0) for a range of values of 1 - a near zero. 

It now seems reasonable to conjecture that d(D'(O))/da = 0 when a = 1; on this 
basis 

D'(0) = - 1.210 (3.19) 
and then, by the use of (3.18), 

D'(2) = - 1.348. (3.20) 

The numerical results over the same range of values of a also confirm that A(x) is 
linear near x = xR, as was assumed in deriving (3.18), and show that this is true over 
the whole range 1 -= 2 < x,. 
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Thus the pressure generally appears to be continuous as C - t  C, + with that derived 
from the earlier solutions obtained when C < C, + ; for the present study 

p = o(c-c,)+ as c3co (3.21) 

while without blow-off p* -p*, is formally O ( R 4 )  and hence from (2.7) 

p = 0 if C < C,. (3.22) 

However, in the neighbourhood of reattachment the situation is different for we now 
see that when (xB - x) = O( 1 - a), p tends to a finite limit as C -f C, + . One may expect 
therefore that in practice a small but rapid rise occurs near the cut-off point as the 
blowing rate passes through the critical level for blow-off. 

4. The numerical procedure for 0 < a < 1 

expansion of 6 in ascending powers of x takes the form 
If 0 < a < 1, we may still treat ( 2 . 9 ~ )  analytically for x < 1.  We assume that the 

a = [9(2+a+)2(1-a+)]*, 
6(x) = ax%-bxm+ ..., 

(4.1) 

where b and m are functions o f a  to be determined. The first term of (4.1 ) is the similarity 
solution found by Amr & Kassoy (1973) for an infinite length of blowing and is by 
itself a solution to ( 2 . 9 ~ ) .  However, on the basis of the previous section, we expect 
that the solution to (2.9a), (2.10) and (2.11) is non-unique and so look for a non-zero 
second term in (4.1). This exists for all b + 0 provided that m satisfies the trans- 
cendental equation 

(4.2) 
8( 2 + at) (1  - at)+ 1 - 1) du 

3m = ja. (1 -uV ’ 

which follows if we substitute (4.1) in ( 2 . 9 ~ )  and equate the coefficient of xm to zero. 
In  the limit a = 1, (4.2) reduces to 

(m-+ ) (m++)  = 0, (4.3) 

and of the two possible solutions m = + is relevant to (4.1) since we are assuming an 
expansion in ascending powers of x. From § 3 we see that the expansion (4.1) continues 

if 1 -a < 1,  which is an expression of the fact that x-%J(x) has the form F(x/I A / ) ,  a) 
as has already been pointed out. For general values of a, (4.2) may be solved by 
Newton-Raphson iteration and in table 2 we display the values of m corresponding 
to various values of a in the range 0 < a < 1. It is observed that m is always close to 
Q. The constant b in (4.1) plays the same role as A in (3.4) and its sign distinguishes 
between two branches of the solution. Anticipating the numerical results to be dis- 
cussed below we note that, if b < 0, p tends to a finite limit as x+03 and x-%~(x)  
takes the form 2i;(lb(xm-%, a). On the other hand, if b > 0, the solution terminates at  a 
finite value xT of x; for x < xT, x-$6(x) takes the form F2(bxm-3, a) and p - f  - 03 as 
x - f x r - .  
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tc 0 0.1 0.2 0.3 0.4 0.6 0.6 0.7 0.8 0.9 1.0 
m 1.403 1.397 1-390 1.382 1.376 1.367 1.369 1.363 1.346 1.339 1.333 

TABLE 2 

The second solution of (4.3) corresponds to an eigenvalue in the asymptotic solution 
for 6 as x -+ 00 and would be needed if there were blowing across the plate for all x > 0, 
the injection velocity being asymptotically but not identically proportional to ~ " - 4 .  
It is noted that this eigenvalue is a decreasing function of a and that 

mlog( l / a )+ -Hlog~  as a+O. 

Before embarking on the numerical solution, it is observed that near reattachment, 
i.e. when [ x - x R [  6 1, (2.9b) may be simplified in a similar way to  that used to derive 
(3.18). We find, by expanding6 in powers of x R  - x, that 6 is linear to lowest order and 

P(xR) @(1)-P(xB))4 = -$a2, (4.5) 

a result that proves useful in deciding the correct choice of b. 
A direct numerical solution of the integral equation (2.9a), by forward integration 

of 2, presents difficulties because the procedure converges very slowly, if at  all, 
probably owing to the basic non-uniqueness of the solution in the absence of a down- 
stream condition, manifested above by b. Consequently it was decided to revert to 
(2.8) together with the slender-body condition (2.10) in the form 

6 ( x )  = x3 exp [ B ( x ) ] ,  x = exp (t - to) (4.817 (4.9) 

and to is a constant to be defined later. The use of 7 transforms the injectant layer 
into a rectangle while (4.8) and (4.9) remove the explicit dependence of (2.8) on 2 or t. 
The form (4.8) is preferable to writing 6(x) = xfB(x) because it makes the coefficients 
off; and the third term in (4.6) simpler to deal with when performing Newton iteration. 
If, as we shall assume, x-%Y(x) is a function of bxm-f, (4.9) changes the effect of b into 
an origin shift oft. Thus there are only three solutions of (4.6), all unique apart from 
the origin oft; one is the constant similarity solution x- t6 (x )  = a while the other two 
correspond to b < 0 and to b > 0. 

The boundary conditions satisfied by f i n  - 00 < t c to are 

= "') f = -24 f 1 = 0,  
f = - a x 2 4  7 = 1. 

After cut-off a t  t = to, f satisfies the conditions 

in to <: t < t,; moreover, in this range oft 

(4.10) 

(4 .11~)  
(4.1113) 

1 2 de 
f: = 2e20 [ (: + '9) exp ( s ( t o )  + t - - 3 to ) - eel ,  7 = 0, (4.12) 
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which is the condition that &u2 +p is constant on the streamline $ = - 24. This is 
used instead off,, = 0 on 7 = 0 because the momentum equation in (2.8) cannot be 
satisfied by u = v = 0 on y = 0 unless p, = 0. As Stewartson (1974b) points out, a 
viscous sublayer is necessary downstream of x = 1 to reduce u to zero on the plate. 

We solve (4.6) and (4.10)-(4.12) by the box method, which has been described by 
Keller & Cebeci (1971) and most recently by Cebeci & Bradshaw (1977, p. 213). We 
step downstream in t and use Newton iteration to solve the difference equations. For 
0.85 < a c 1, 10 steps in 7 and step lengths of 0.1 or 0.05 in t are sufficient to give 
convergence to within a tolerance of For a = 0.5, double the number of steps in 
7 are needed since the range off and f,, in 0 < 7 < 1 is much larger. Beyond cut-off, 
convergence is slower with these step lengths, but we choose to be satisfied with con- 
vergence to within We find that, as the solution converges a t  any t position, it 
may begin to oscillate as it approaches the correct value. This is thought to  be due to 
the hyperbolic nature of (4.6) and is corrected by using relaxation once the oscillation 
has been detected. 

The initial conditions on f and f,, in 0 < 7 < 1 are found by solving the equation 

f f q q  + *f II” - *3 = 0, (4.13) 

where a is defined in (4.1), to which (4.6) reduces in the limit t+--oo. However, by 
starting with these values and using the correct initial conditions 8 = loga and 
de ld t  = 0 we have still not specified the type of solution since these values must hold 
at x = 0 for all three branches. Nevertheless, the presence of numerical errors means 
that even after the first step in t ,  8 and d8/dt are not exactly equal to their initial values. 
Thus the solution begins to diverge from the similarity form which one would otherwise 
expect and b has effectively been given some value. We find that the solution then 
follows whichever branch the sign of this b dictates and we cannot recover the unstable 
case b = 0. In  order that we may choose the sign of b, we give de ld t  a small positive or 
negative impulse initially: positive for b < 0, negative for b > 0. Thus instead of 
beginning the solution at z = 0, we start it at x = xo (4 1).  We define to in (4.9) by 

xo = exp ( - t o ) ,  (4.14) 

where (4.1) shows that (3a [dt9/dt]t-o)1/(m-#) 
2b 

exp ( - t o )  21 (4.16) 

The initial values off, f,, and 0 are unchanged to lowest order because xo 4 1. 
Once the calculations have been performed it becomes clear that for a fixed a the 

two solution branches b 2 0 are unique apart from the origin of t ,  as we anticipated. 
Whatever initial value of d8 ld t  is used, the solution remains the same, but is shifted 
along the t axis. Figure 3 shows an example of each branch and confirms that if b > 0, 
6 is linear and p tends to a finite limit as x-f 00, since x*p(x) + x-%3(x) as x+ co. It also 
shows that the solution terminates in a singularity, as discussed above, if b > 0. As 
in the marginal blow-off problem, we need b > 0 for a correct match at x = 1.  We 
choose a cut-off point by setting t = to a t  some value 8(to) of 8. We then continue to 
solve (4.6) subject to  the new boundary conditions (4.11) and (4.12) until the re- 
attachment point tR = 2 log (lla) is reached, where we require 8(t)  + - 00 as t + tR in 
order to satisfy 6(xR) = 0. Since p(xR), which is given by 
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FIGURE 3. Solution branches for b < 0, b = 0. b > 0; u = 0.85. 
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FIQURE 4. Solutions past cut-off for different values of S( 1); u = 0.85. 

is not zero this implies that d6'/dt -+ - 00 also as t 3 tR. In  to < t < tR we change the 
step length to a fraction of tR - to so that the reattachment does not occur in the middle 
of a step. If t ,  - to 3 1, the step length is taken to be close to its value in t < to and if 
t ,  - to < 1 it is taken to be ?5(tR - to). 

If the value we choose for 6'(to) is too high, the slope of 6' in to < t < tR is too small 
and 6'(tR) is finite (i.e. 6(xB) $: 0) ,  but if the value of @to) is too low, the slope of 6' is 
too large and 6' -+ - co before t = tR. Once dO/dt becomes large and negative ( < - 100) 
as ee approaches zero, the numerical solution converges slowly and the solution for 
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3 4 

FIGURE 5. Height of injectant layer. 

FIGURE 6. Pressure between separation and reattachment. 

the last few steps is in fact found by fitting the solution to the known analytic form, 
in which 6(x)  is linear near reattachment. We believe that the value of f?(to) can be 
found correct to three significant figures. Examples of the solution in to < t < tR for a 
range of values of 6(t,) are shown in figure 4 for a = 0.85. 

By fixing f?(to) and therefore to, the distance from the initial position to cut-off, we 
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FIUURE 7. Preasure at cut-off us. a. 

have determined b and so matched the solution in 0 < x < 1 with the solution in 
1 < x < xR. Equation (4.15) gives 

b = ".F) exp[(m-#)to]. 
2 €4 

(4.16) 

In addition to the solutions for a = 0.99, 0.98 and 0.97 mentioned in Q 3, solutions 
have been found for a = 0.85 and 0.5 and a representative sample is shown in figures 
5 and 6. We see that in all cases there is a discontinuity in p'(x) in conformity with 
(2.15) and that downstream of cut-off the pressure continues to decrease to a minimum 
a t  x = xR - . This last result follows from rewriting (2.8) in the form 

(4.17) 

and recalling that v > 0 a t  y = S(x). As a decreases to zero, the values of p (  1) and p(xR) 
increase and seem to be approaching zero from below (see figure 7) .  They must in 
fact both be negative since the injectant fluid remaining in the inviscid layer is con- 
tinually being accelerated in 1 < x < xR. Hence as no extra fluid is supplied the value 
of 6 must decrease, i.e. p < 0 in x 3 1. It then follows from (4.5) and the fact that 
xR- 1 = a-2- 1 thatasa-+0,p(l)/a~isboundedwhilep(xR)/a~-+2-~. Thusthegeneral 
principles covering the cut-off and reattachment conditions formulated by Smith & 
Stewartson (1973a) for strong injection in which V z  = O(R-%U*,), or in this case 
a = O(R-*), are consistent with the solutions obtained here. For example, the pressure 
rise in strong injection is O(R-4) and at  cut-off it is also O(R-a). According to our 
theory, when a < 1 the pressure rise is generally O(R-*a-f), at cut-off it is O(R-)at) 
and a t  reattachment it is O(R-ta%). Although Smith & Stewartson's solution was not 
continued to reattachment, the form of the solution proposed for the region down- 
stream of cut-off has s ' ( ~ )  < 1 as has ours when a < 1. Strictly the injection velocities 
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in the two studies have different forms but they Can easily be generalized without 
altering the general structure of the flow field. The only essential requirement is that 
in moderate blowing separation occurs at the leading edge. 

5. Discussion 
The key to the completion of a satisfactory description of the separated boundary 

layer in a supersonic flow due to a similarity-type injection velocity is the realization 
that even though the governing equations are either hyperbolic or parabolic the 
satisfaction of initial and boundary conditions in the injectant region does not establish 
uniqxeness of the solution. There is an arbitrary constant available which enables us  
to satisfy the condition a t  reattachment that the boundary-layer thickness is reduced 
to the same order of magnitude as in classical theory ( w R-4). The solution may be 
generalized if required to include any moderate injection velocity ( - R-4) provided 
that it is strong enough near the leading edge to provoke separation immediately and 
also that sufficient fluid is injected that the free shear layer is unable to entrain it all 
before cut-off. The numerical procedure is similar to that used here, but the simpli- 
fication of the universal solution which reduced the labour in $ 4  is lost with other 
injection velocities. Instead, it will be necessary to establish to initially and carry the 
integration right through from the leading edge for a variety of such values until one 
is found which leads to S being zero at  reattachment. 

Some questions of detail are however left unanswered in this paper. The actual mode 
of separation near the leading edge presumably has much in common with the free- 
interaction separation discussed by Stewartson & Williams (1 969) and by Smith & 
Stewartson ( 1 9 7 3 ~ )  but needs further study to determine, for example, the maximum 
pressure at the onset of blowing. Again, a% cut-off 6 and p are properly continuous 
but the pressure gradient is discontinuous and presumably a transition region is 
needed here to  smooth it out. Finally there is a finite pressure rise at  reattachment 
which manifests itself as a discontinuity on the scale of the injectant region. Such a 
phenomenon is not new in supersonic boundary-layer theory and has been described 
by Messiter et ul. (1973) and by Burggraf (1973, 1975). The jump in pressure at re- 
attachment is necessary in those problems to turn fluid entrained by the shear layer 
round to complete its recirculation path. Here the jump is weaker and its role is 
merely to reorient the free shear layer to be parallel to the plate, the circulation near 
reattachment being of negligible proportions. A full study of these transition regions 
requires an investigation on the lines of the work done by Stewartson (19743) for 
strong injection, which, while beyond the scope of this paper, is not expected to disturb 
the conclusions here in a significant way. 

Let us consider the changes in the structure of the boundary layer when the injection 
rate is gradually increased, being always of the Iglisch & Grohne type near the leading 
edge and such that separation occurs there if at  all. For weak blowing rates the 
boundary layer is only slightly thickened and the pressure rise remains O(R-4) over 
the plate. Eventually a critical injection rate is reached a t  which separation occurs 
at  the leading edge. At marginaI blow-off rates the boundary layer begins to show 
signs of thickening owing to the formation of an inviscid layer of injected fluid near the 
plate. The most noticeable result is a sharp drop in the pressure near cut-off a 
minimum value O ( R 4 )  belowpp*,. The reason is that the free shear layer returns rather 
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abruptly to the plate just after cut-off once it has entrained all the injectant. The 
pressure variation then ensures that the shear layer becomes parallel to the plate 
again. As the injection rate increases, the pressure fall at  cut-off and reattachment 
spreads upstream and diminishes in magnitude. The pressure gradient upstream of 
reattachment of course remains favourable. When a state of strong injection O(R-%) 
is reached the thickness of the inviscid layer reaches O(R-4) but downstream of cut-off 
the pressure fall is considerably smaller in amplitude [O(R-l)] ,  being slightly greater 
[O(R-l%)] near reattachment, which occurs at  a distance O(Ra) further downstream. 

Other problems which may prove tractable using the non-uniqueness property 
found here include subsonic boundary layers with separation at  the leading edge and 
boundary layers subject fo  blowing which separate a finite distance downstream of 
the start of injection. The occurrence of separation in the latter cases is probably 
similar to that described by Catherall et al. (1965) and the free shear layer which 
develops downstream cannot be expected to be immediately of the self-similar type in- 
vestigated by Iglisch & Grohne (1945) .  Further discussion of this problem is postponed. 

Some numerical results for blowing with a finite Reynolds number have recently 
become available (Werle 1977). In  form, these compare well with the slot blowing 
studies of Smith & Stewartson (1973b) and by implication support the results of tlhis 
paper. The injection distributions which Werle considers are however sufficiently 
unlike those that we use for us to be unable to make any direct. comparisons at  present. 
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